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APPLIED MACHINE LEARNING 

Independent Component Analysis (ICA)

Algorithm

1Adapted from Hyvarinen @ 2000
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Consider a N-dimensional observation vector Nx

ICA estimates both the mixing matrix  and the sources  knowing only .A s x

Assume that  was generated by a linear variable model
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ICA: Algorithm

1st ambiguity of ICA: x is product of A and s
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ICA: Hypotheses

 1 statistically independent.1:   : ,....,  are Ns s s=

.2: The distribution of  is l noik nely G to sbe - au sians

Two hypotheses:

S1

S2

( )
1 2

.

Here is an example of two independent sources and ,

whose distribution is non-Gaussian here uniform distribution

s s

( )1 2,p s s

*

?
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ICA:  Statistical dependency

S1

S2

X1

X2

x A s= 

Observables X1 and X2, result from a linear combination of the independent sources. 

The distribution of the mixed observables is not statistically independent.

1Approach:  Use the correlation to find ,  then compute A s A x−=

Distribution is tilted! 

Entails correlations.
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ICA: Finding mixing matrix - intuition

S1

S2

X1

X2

Idea: 

Finds the columns of the matrix A. 

The vectors embeds correlation across variables

Once projected onto these vectors, the 

distribution is statistically independent
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ICA:  Ambiguity

S1

S2

X1

X2

2a
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2nd ambiguity of ICA: cannot determine the sign of the vectors2nd ambiguity of ICA: cannot determine the sign of the vectors



MACHINE LEARNING I

 

 

ICA first pre-processing step starts 

by centering the distribution such that:  '

                                                               ' 0 

x x E x

E x

= −

 =

7

ICA: Preprocessing - Centering 

X’1

X’2

' 'x A s= 

 1' ,    S Ss s A E x  −= + = 
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Advantage: Need only to compute the angle of rotation  

ICA: Preprocessing - Whitening

 White: TE XX I=     1 2 1 2Uncorrelated: ,E x x E x E x=

1 2The joint distribution ( ) of two variates ,  is said to be 

i uncorrelated  f the variates are  and t e

w

varianc  .ehei ur a

hite

is q l to unity

 p x x x

:  Matrix composed of all instances 

       of the observations 

X

x
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But at each time step of the recording, we obtain a new observation 

of both mixtures and sources.

source1

source4

source7

mix

mix

mix

3x

2x

1s

2s 3s

If we do T measurements, the total dimension of the dataset is 

X: N T

N-dimensional observation vector  and sources s , 3.N Nx N  =

ICA-sound/source1.wav
ICA-sound/source4.wav
ICA-sound/source7.wav
ICA-sound/100100100mix1.wav
ICA-sound/100100100mix2.wav
ICA-sound/100100100mix3.wav
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ICA: Preprocessing - Whitening

( )  IXX
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=
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:s.t.  ,matrix  a Determine
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2 TV D E
−

= 

   1

1

Use the eigenvalue decomposition

,...., ,   ,...,

T T

N

N
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D diag E e e 
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= =
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T T T T T

T T T

X X V XX V D E XX ED

X X D E EDE ED I

− −

− −

= =

= =

Whitening is essentially decorrelation followed by scaling.

Whitening is bringing us closer to unmix the observables and find the sources. 

However,  it only guarantees to find projections that decorrelate the data. 

It does not guarantee to find projections such that the dataset becomes 

statistically independent.

:  Matrix composed of all instances 

       of the observations 

X

x
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ICA: Determining the sources

.The distribution of G ais non- us sians

Find sources how joint distribution optimizes 

a measure of non-gaussianity 

Negentropy or Kurtosis
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ICA: Optimizing – Fast ICA

Estimating the negentropy is difficult as it requires 

to estimate the distribution of the data

→ Minimizes Kurtosis instead

( ) ( )  ( )( )
2

4 2

Iterative process: candidate source ?

Look for an optimum of 3T T

y s

J y E w x E w x

=

  −
  

     ( )
2

4 4 2( )  ;  ( )  -3kurtosis x E x kurtosis s E s E s= =

( ) ( )  ( )
4 4

Search optimum for: 3TJ y E w x E w= −

Since data is white and uncorrelated    2 1TE xx I E y=  =
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Fast – ICA optimization

( ) ( )( )
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It is important to choose well the G functions. 

• Non-quadratic functions, that do not grow too fast.

• Asymmetric derivative

        1 2 1 2

For any non-linear transformation G, we would have:

E G s s E G s E G s = 

( ) ( )  ( )
4 4

Set to minimize: 3TJ y E G w y E w= −
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Fast – ICA optimization
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Fast-ICA: Determining the sources iteratively

Idea: find each source one after the other one (iterative process)

Let  be a candidate projection, such that:

,     T T T

w

y w x w As zs z w A= = = =

  is more gaussian than s 

(central limit theorem), unless .

y

y s=

 iterate until one finds a  that maximizes the non-gaussianity of y.w=

*w

w

( )
Search ,  to seek optimum: 0  

TdJ y w x
w

dw

=
=
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Fast – ICA optimization

Let x’’  be the centered and whitened projection of the data

1. Choose an initial (e.g. random) weight vector w. 

2. Compute the quantity   

w
w

w

+

+
=    1T T T TE yy w E xx w w w I=  = =

3. Proceed to a normalization of the weight vector:  

( ) ( )1 1Tw t w t−  4. If the weight has not converged, that is if: 

go back to step 2. 

( )  ( )    (derivative of J)T Tw E xG w x E g w x w+ = −
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ICA: iteration for several sources

 To estimate several independent components, we must prevent the 

different vectors from converging to the same maximum. 

                      → decorrelate the vectors at each iteration. 

1. Estimate the independent components one by one 

2. Run the one-unit fixed-point algorithm for 

3. after every iteration step subtract from          the other``projections'' 

1pw +

1,..., pw w

1 ,    1,...T

p j jw w w j p+ =

1pw +

Guaranteed to converge to one of the independent components

Hyvarinen & Oja (1997)
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ICA Estimation and Limitations
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Limitations of ICA

Reconstructed sources 

may be inverted 

(sign of vector unknown)

Source vectors cannot be ordered 
according to importance 

(unlike  PCA) 

ICA Estimation

Centering  (mean=0)

Whitening  (variance = 1) 

Fast-ICA for one component

Fast-ICA for several components + 
decorrelation at each time step
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