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Independent Component Analysis (ICA)

Algorithm

Adapted from Hyvarinen @ 2000 1
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ICA: Algorithm

Consider a N-dimensional observation vector x € RN

Assume that x was generated by a linear variable model
X = AS

A: is an unknown N x N mixing matrix

se R" are unknown latent random variables,
referred to as the sources.

ICA estimates both the mixing matrix A and the sources s knowing only x.

1st ambiguity of ICA: x is product of Aand s
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|ICA: Hypotheses

Two hypotheses:  1: s:={s,,....,s, } are statistically independent.

2: The distribution of s is likely to be non-Gaussian.

Here is an example of two independent sources s, and s, ,
whose distribution is non-Gaussian ( here uniform distribution).



ICA: Statistical dependency

Observables X, and X, result from a linear combination of the independent sources.

The distribution of the mixed observables is not statistically independent.

Distribution is tilted!
X, Entails correlations.

Approach: Use the correlation to find A, then compute s = A™'x
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ICA: Finding mixing matrix - intuition

ldea:
Finds the columns of the matrix A.
The vectors embeds correlation across variables

X=A-S

Once projected onto these vectors, the
distribution is statistically independent
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ICA: Ambiguity

2"d ambiguity of ICA: cannot determine the sign of the vectors
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ICA: Preprocessing - Centering

ICA first pre-processing step starts
by centering the distribution such that: x'=x—E{x}

= E{x'}=0

)

v

X'=A-s'

S=stus, ps=A"-E{X]
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|CA: Preprocessing - Whitening

The joint distribution p(x) of two variates x;, X, is said to be white
If the variates are uncorrelated and their variance is equal to unity.

Uncorrelated: E{x,X,} =E{x}E{xX,} White: E{XX "} =1

X : Matrix composed of all instances
of the observations x

\“

v

Advantage: Need only to compute the angle of rotation &
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N-dimensional observation vector x € R" and sources se R, N =3.

But at each time step of the recording, we obtain a new observation
of both mixtures and sources.

If we do T measurements, the total dimension of the dataset Is
XN T


ICA-sound/source1.wav
ICA-sound/source4.wav
ICA-sound/source7.wav
ICA-sound/100100100mix1.wav
ICA-sound/100100100mix2.wav
ICA-sound/100100100mix3.wav

|CA: Preprocessing - Whitening

Determine a matrix V, s.t.: Use the eigenvalue decomposition

X"=VX' E{XX"}=EDE'

E{(X"XT)=1 D =diag{4,... 4y}, E={¢",...e"}

X : Matrix composed of all instances 1 1
of the observations x E{X"X "} =VE{XX"|VT =D ?E"E{XX"}ED ?

1 1
E{X"X"T}:D 2ETEDETED 2 = |

Whitening is essentially decorrelation followed by scaling.

Whitening is bringing us closer to unmix the observables and find the sources.
However, it only guarantees to find projections that decorrelate the data.

It does not guarantee to find projections such that the dataset becomes
statistically independent.



ICA: Determining the sources

The distribution of s I1s non-Gaussian.

Find sources how joint distribution optimizes
a measure of non-gaussianity
Negentropy or Kurtosis
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ICA: Optimizing — Fast ICA

Estimating the negentropy is difficult as it requires
to estimate the distribution of the data

- Minimizes Kurtosis instead

kurtosis(x) = E {x*}; kurtosis(s) = E{s“}-B(E{sZ})2

Iterative process: candidate source y =s?

Look for an optimum of J (y) o« [E {(WTX)4} -3k ((WTX)2 )T

Since data is white and uncorrelated E {XXT} =1 =E {yz} =1
Search optimum for: J (y)=E {(WTX)4} —3E (||w||4)
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Fast — ICA optimization

For any non-linear transformation G, we would have:

E{G{s s,}} =E{G{s.}}-E{G{s,}}

Set to minimize: J (y)=E {G (w' Y)4} —3E (||W||4)

It is important to choose well the G functions.
* Non-quadratic functions, that do not grow too fast.

« Asymmetric derivative

Good carlwdidatesare : d(ill(y) =g,(y)=tanh(a-y) 1<a<2
G,(y)==log(cosh(a-y)), 1<a<2 y .
a dG,(y) _ g,(y)=y-e?
—Zy? 2
G,(y)=—e 2 dy
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Fast — ICA optimization

Gia dG1/dt a
) Gt a=1 X dG1/dt a=1
Glsa dG1/dt &
G2 dG2/dt
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Good candidatesare : dG,(y)

G,(y)= i log(cosh(a-y)), 1<a<2 dy

L dGZ(y)_ . Ly
G,(y)=-e? dy =g,(y)=y-e?

=g,(y)=tanh(a-y) 1<a<2

14
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Fast-1CA: Determining the sources iteratively

Idea: find each source one after the other one (iterative process)

Let w be a candidate projection, such that:

y:WTXZWTASZZS, Zz=W'A / w*
y 1S more gaussian than s / >
(central limit theorem), unless y =s.

dw

Search w, to seek optimum: =0

=> Iterate until one finds a w that maximizes the non-gaussianity of y.
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Fast — ICA optimization

Let x” be the centered and whitened projection of the data
1. Choose an initial (e.g. random) weight vector w.
2. Compute the quantity W' =E {XG (WTX)} ~-E {g (WTX)} w (derivative of J)
3. Proceed to a normalization of the weight vector:
W

WZ‘—+
W

4. If the weight has not converged, that is if: ' (t _]_) . W(t) +1
go back to step 2.

E{ny}:l<:>WTE{xxT}W=WTW:I
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ICA: Iteration for several sources

To estimate several independent components, we must prevent the
different vectors from converging to the same maximum.
—> decorrelate the vectors at each iteration.

1. Estimate the independent components one by one Wi, ..., W,
2. Run the one-unit fixed-point algorithm for Wp+1

3.  after every iteration step subtract from W the other "projections”

T

W, W W, j=1..p

1. Let Wpil = Wpii1— EE‘:I Wg+1ij3

— faprd
2. Let Wopil = Wp+1‘r" wﬁ-lwﬁl

Guaranteed to converge to one of the independent components
Hyvarinen & Oja (1997) 17



| CA Estimation and Limitations

e

ICA Estimation

Limitations of ICA

Reconstructed sources
may be inverted

Centering (mean=0 '
ing ( ) (sign of vector unknown)

Whitening (variance = 1)
Fast-1CA for one component Source vectors cannot be ordered

Fast-ICA for several components + according to Importance
decorrelation at each time ste '
\_ p ) (unlike PCA) V.
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